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An important problem in game theory is why bounded rationality occurs, e.g.,

why altruism to non-kin occurs. Previous explanations involved computational

limitations of the players, repeated play among the players etc. As an alterna-

tive, we introduce a pre-play step in which each player i chooses a “persona”,

i.e., a ficticious utility function she commits to use in the game. By adopt-

ing different personas, player i induces different moves by the other players

in the game. Sometimes by adopting a “bounded rational” persona, player i

induces moves by the other players that increase i’s true utility function. In

such cases, player i’s acting in a “bounded rational” way can be optimal for i.

This phenomenon can explain some experimental observations concerning the

prisoner’s dilemma, the ultimatum game, and the traveler’s dilemma.

Summary: We show how bounded rational behavior in general, and altruism

in particular, can be utility-maximizing in non-repeated, anonymous games.
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One of the enduring problems of game theory (1–3) is explaining why human and ani-

mal players so often exhibit “bounded rationality”, in that they seem not to adopt the strategy

that optimizes their objective (4–7). As a particular example, outside of the biology-specific

phenomenon of kin selection, the wide-spread phenomena of altruism and cooperation often

appears to be bounded rational.

Many models have been offered to explain bounded rationality in general and non-kin-

selection altruism in particular (1,2,4,5,8,9,9–16). Some of these rely on ad hoc assumptions of

bounded computational capabilities of the players. Other involve repeated interactions among

the players, where the players have some ability to recognize their opponents from one inter-

action to the next, at least implicitly. The folk theorems of game theory can be viewed as the

earliest examples of these repeated-interaction explanations. More recent examples are models

that involve reputation effects, punishment, “loners”, negotiating processes, etc.

Here we present a simple and broadly-applicable framework that provides an alternative

explanation for bounded rationality. This framework is based on the observation that social

organisms often have definite “personas” that they adopt for their interactions with one another.

For example, someone might “act dumb” in some social situations but not others. More gen-

erally, we “act like a different person” when we interact with (i.e., engage in a game with) our

boss, with our spouse, with a child, etc. Often we even consciously decide “how to act” with

those people before the interaction.

Say that all players are free to choose such a persona before the start of play. Then for

many games, adopting a persona that is bounded rational (e.g., acting dumb) actually results in

larger expected utility when the game is played than does adopting a fully rational persona. This

is true even for anonymous, non-repeated games, and even when there is no explicit pre-play

signaling of personas among the players. In this sense, “bounded rationality” can actually be
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utility-maximizing.

We show below how this framework can explain a lot of behavioral game theory experi-

mental data, focusing on the famous Traveler’s Dilemma (TD) and Ultimatum Game (UG). We

also explore the possible implications of our framework for how to optimally design distributed

systems of adaptive agents. Next we show that our framework contains phase transitions, in

which infinitesimal changes in a player’s choice of persona can completely change the equilib-

rium of the game. We end with a discussion of the possible relation between our framework

and phenomena like “social intelligence” and “culture gaps”.

Before presenting our framework, we first review game theory using the example of the

famous Prisoner’s Dilemma (PD) (10, 17, 18). Say we have two players, Row and Col, each

of whom can choose one of two moves (also know as “pure strategies”). Write those sets of

allowed moves as {Top,Down} for Row, and {Le f t,Right} for Col. Both players have a “utility

function”, which maps any joint move by both players into a real number. For example, in the

PD the utility function pairs (uRow, uCol) for the four possible joint moves can be written as the

matrix
[

(6, 0) (4, 4)
(5, 5) (0, 6)

]

(1)

So for example, if Row plays T while Col plays L, then Row’s utility function equals 6 and

Col’s equals 0.

To play a game each player i ∈ {Row, Col} independently chooses a “mixed strategy”, i.e., a

probability distribution Pi(xi) over her pair of allowed moves. So the expected utility for player

i is EP(ui) =
∑

xi,x−i Pi(xi)P−i(x−i)u(xi, x−i), where P−i(x−i) is the mixed strategy of i’s opponent.

We say that a pair of mixed strategies (PRow, PCol) is a Nash Equilibrium (NE) of the game if for

all players i, EP(ui) cannot increase if Pi changes while P−i stays the same. Intuitively, at a NE,

neither player could benefit by changing her mixed strategy, in light of her opponent’s mixed
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strategy. If either player violates this condition, she is said to exhibit “bounded rationality”.

As an example, in the PD, there is a unique NE, where Row plays T with probability 1.0

and Col plays R with probability 1.0. (Given the mixed strategy of Row, Col’s expected utility

would decrease if she played L with non-zero probability, and given the mixed strategy of Col,

Row’s expected utility would decrease if she played D with non-zero probability.) Note though

that at the (non-NE) joint move (D,L), both players have higher expected utility than at the NE.

So if they could only both be induced to cooperate with one another and choose that move —

and in doing so both be bounded rational— both of the players would benefit. In light of this,

often the move T by Row and the move R by Col are referred to as the “Defect” move, while

their other moves are referred to as “Cooperate”.

Now say that rather than being rational in the PD, Col were perfectly irrational. This means

that she commits to choosing uniformly randomly between the two columns, with no evident

concern for the resultant value of her utility function, and in particular with no concern for what

strategy Row adopts. Given such irrationality of Col, Row would have expected utility of 5

for playing T, and of 2.5 for playing D. So if Row were rational, given that Col is irrational,

Row would still play T with probability 1.0. Given that Col plays both columns with equal

probability, this in turn would mean that E(uC) = 2. Since if Col were rational her expected

utility would be 4, being irrational rather than rational would hurt her in the PD.

Now however modify the PD to have the following utility functions (uR, uC):
[

(0, 0) (6, 1)
(5, 5) (4, 6)

]

(2)

Again the pure strategy (T,R) is the only NE. At that NE, E(uC) = 1.0. Now though if Col were

irrational, Row would have expected utility of 3 for playing T, and of 4.5 for playing D. So if

Row were rational, given that Col is irrational, Row would play D with probability 1.0. Given

that Col plays both columns with equal probability, this in turn would mean that E(uC) = 5.5.
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So by being irrational rather than rational, Col has improved her expected utility from 1.0 to

5.5. Loosely speaking, such irrationality by Col allows Row to play a move that Row otherwise

wouldn’t be able to play, and that ends up helping Col. This is true even though Col would

increase her expected utility by acting rationally rather than irrationally if Row’s mixed strategy

were fixed (atD). The important point is that if Col were to act rationally rather than irrationally

while Row’s rationality were fixed (at full rationality), then Col would decrease her expected

utility.

This phenomenon can be seen as a model of the common real-world scenario in which

someone “acts dumber than they are” (by not being fully rational), and benefits by doing so.

Similar phenomena can model other types of real-world bounded rationality. To illustrate this,

further modify our game to have the following utility functions:
[

(0, 0) (6, 1)
(5, 5) (0, 6)

]

(3)

As before, (T,R) is the sole Nash equilibrium of the game. Again as before, assume that Row

is perfectly rational. Then Col doesn’t benefit from being irrational, since doing that won’t

induce Row to flip from T to D. But now say that Col were anti-rational, in that she always

chooses the strategy that minimizes E(uc) (given the strategy of Row), rather than maximizes

it. Since R is dominant for Col (i.e., gives higher utility regardless of Row’s move), this anti-

rationality means that Col always chooses move L. This in turn causes Row to flip from T to

D, which benefits Col (E(uCol) goes from 1.0 to 5.0). Loosely speaking, in this game, given that

Row is rational, Col would benefit from “being her own worst enemy”, i.e., from preferentially

choosing whatever move is worst for her given Row’s move.

It is important to realize that the potential benefit of being anti-rational is not the same as the

benefit that non-credible threats can provide in certain extensive form games (1, 2). In essence,

a player making a non-credible threat says to her opponent, “If you do α, I’ll do something
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that will hurt me — but will also hurt you. So you must not do α, and I will exploit that”.

In contrast, a player with β = −∞ says “No matter what you do, I’ll do something that will

hurt me”, and in certain games, derives benefit from that. In fact, such a benefit can arise

even if we restrict attention to “subgame perfect NE”, which preclude non-credible threats (see

supplemental online materials).

We can model all of these phenomena with a sequence of two games. In the first, “ratio-

nality” game, all players decide how rational to be. That joint rationality choice specifies the

subsequent “realized” game that the players then play with one another. It is the NE of that

subsequent realized game that determines the ultimate joint strategy P(x) of the players. There-

fore it is the NE of the realized game that ultimately provides the utility to the players of the

rationality game.

As an example, indicate the choice of full rationality as β = ∞ and anti-rationality as β =

−∞. Let γ ≡ (X1, X2, u1, u2) be the original, “concrete” game, where Xi is player i’s strategy

space (e.g., XRow = {T,D}), and ui is her utility function. The rationality choices made by the

two players in the rationality game determine how to modify the concrete game to construct

the realized game: the realized game associated with a pair of rationality choices {βRow, βCol} is

γ′ ≡ (X1, X2, u′1, u
′
2) where for both players i, u

′
i = ui if βi = ∞, and u′i = −ui if βi = −∞. Any

such realized game γ′ has a NE joint strategy Pγ′(x). (Note that for any i, in general a change to

u′i changes Pγ′ .) In turn, that strategy determines EPγ′ (ui) for every player i. This is the expected

utility of each player i of the rationality game. So the goal of each player i in the rationality

game is to choose a rationality βi such that, given the rationality choice of her opponent, the NE

of the associated realized game γ′ maximizes i’s expected utility. (See the supplemental online

materials for a more detailed formal definition of rationality games.)

To illustrate this, let the concrete γ be the game indicated in Table 3. If βR = βC = ∞,

then γ′ = γ. So the NE of γ′ in this case is (T,R), the NE of γ discussed above. For this joint
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rationality, the utilities to the players is (6, 1). We can do an analogous calculation of utilities

for the remaining three possible joint rationalities. For this concrete game, doing this generates

the following utility bimatrix to the players of the rationality game for their four possible joint

rationality choices:

Col rationality
−∞ +∞

Row rationality
−∞ (0, 0) (0, 6)

+∞ (5, 5) (6, 1)

(4)

(Note that this is just a rearrangement of the entries in the concrete game γ.)

There is a dominant NE of this rationality game at the pure strategy (+∞,−∞). Accord-

ingly, if two humans play the rationality game and resultant realized game rather than the single

concrete game, then Col will elect to be anti-rational, and Row will elect to be rational; neither

would benefit from choosing a different rationality, given the choice of her opponent.

Alternatively, imagine that behavior of two species’ playing this game with each other has

been determined via repeated plays of the game conducted under natural selection pressures. If

those pressures acted on genes whose alleles code for the concrete game strategies, then typi-

cally the frequency of those alleles will evolve to the NE of the concrete game (3,15). However

if natural selection instead acts on genes whose alleles code for one of the two rationalities

{−∞,+∞}, then in general the frequency of those alleles will evolve to the NE of the rationality

game. This would manifest itself as an equilibrium strategy over the realized game in which

members of the Col species always choose L, and members of the Row species always plays D;

an outcome that differs from the NE of the concrete game.

It is important to note that when a player commits to some rationality, she fixes neither her

strategy in the realized game nor the strategies of her opponents in that game. These strategies

are only determined by the realized game players after all of the rationality game players have
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made their choices.

Now modify our two-player concrete game by allowing each player four possible moves

rather than two, and have the utility functions (uR, uC) be:






























(0, 6) (4, 7) (−1, 5) (4, 4)
(−1, 6) (5, 5) (2, 3) (7, 4)
(−2, 1) (3, 2) (0, 0) (5,−1)
(1, 1) (6, 0) (1,−2) (6,−1)































(5)

A NE of this game is the joint pure strategy where Row plays her bottom-most move, and Col

plays her left-most move. An anti-rational equilibrium, where both players try to minimize their

utility functions, occurs if Row plays the top-most row and Col plays the right-most column.

The remaining two possible joint rationalities of the players correspond to the remaining two

entries on the skew-diagonal of the matrix. This results in the following rationality game:

Col rationality
−∞ +∞

Row rationality
−∞ (4, 4) (3, 2)

+∞ (2, 3) (1, 1)

(6)

The joint rationality (−∞,−∞) of this game is Pareto superior to (+∞,+∞), i.e., if both players

play anti-rationally rather than rationally, then both players benefit. Moreover, (−∞,−∞) is a

(dominant) NE of the rationality game. At that joint rationality, neither player would benefit

from changing to rational behavior, given that her opponent were anti-rational. Note in particu-

lar that (+∞,+∞) is not a NE of the rationality game. So if the players are sophisticated enough

to play the rationality game with each other rather than the concrete game, they will both act

anti-rationally, and will thereby both benefit.

There are also concrete games where the NE of the associated rationality game is (−∞,−∞)

but this is not optimal for either player. An example is the following concrete game:
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(3, 3) (6, 2) (−1, 0) (4, 1)
(2,−1) (5, 0) (−2,−2) (3,−3)
(1, 8) (8, 7) (0, 5) (2, 6)
(0, 3) (7, 4) (−3, 2) (1, 1)































(7)

The four possible joint rationalities have equilibria lying on the main diagonal of this matrix, so

the associated rationality game is:

Col rationality
−∞ +∞

Row rationality
−∞ (1, 1) (5, 0)

+∞ (0, 5) (3, 3)

(8)

This pair of utility matrices is just the PD introduced above (up to irrelevant rescalings, etc.)

with “defect-defect” identified as (−∞,−∞), and “cooperate-cooperate” as (+∞,+∞). So for

that concrete game, the players would not benefit by being sophisticated enough to play the

rationality game. Rather they would be better off simply playing the (NE of the) concrete game.

Many distributed engineered systems can be viewed as games among the distributed subsys-

tems where, loosely speaking, the engineer has the ability to set some aspects of the utility func-

tions of the players and/or of how rational the players are. Examples involving purely artificial

players include distributed adaptive control, distributed reinforcement learning (e.g., such sys-

tems involving multiple autonomous adaptive rovers on Mars or multiple adaptive telecommu-

nications routers), and more generally multi-agent systems involving adaptive agents (19–22).

In other instances of such engineered systems some of the players are human beings. Exam-

ples here include air-traffic management (23), multi-disciplinary optimization (24,25), and in a

certain sense, much of mechanism design, and in particular design of auctions (1,2, 26).

The implications of the rationality games based on the concrete game in Table 2 suggests

that the performance of some of these engineered systems could be improved if the players
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were impeded from playing rationally (e.g., by corrupting their sensor input). The rationality

game associated with the concrete games in Table 3 and 5 suggests that some of the players

might even improve their performance if they were induced to always act against their own best

interests (e.g., by appropriate transformation of their reward signals from their environment).

The focus of the discussion so far has been on pure strategy equilibria of rationality games.

At such equilibria, though a player may not be playing rationally in the realized game, her

rationality has a single, definite value. In contrast, when the equilibrium of the rationality game

is mixed, some players chooses how rational to be in the realized game by randomly sampling

their mixed strategies. Intuitively, such players benefit by being “capricious”, or “flighty”, and

keeping their opponents “on their toes” as to whether they will be rational or not.

Such a mixed strategy equilibrium of the rationality game arises when the concrete game is

the famous Traveller’s Dilemma (TD) (27–32). The TD models a situation where two travelers

fly on the same airline with an identical antique in their baggage, and the airline accidentally

destroys both antiques. The airline asks them separately how much the antique was worth,

allowing them the answers {2, 3, . . . , 101}. To try to induce honesty in their claims, the airline

tells the travelers that it will compensate both of them with the lower of their two claims, with

a bonus of R for the maker of the lower of the two claims, and a penalty of R for the maker of

the higher of the two claims.

To formalize the TD, let Θ(z) be the Heaviside step function, Θ(z) = {0, 1/2, 1} for z < 0, z =

0 and z > 0, respectively. Then for both players i, the utility function in the TD concrete game

is ui(xi, x−i) = (xi + R)Θ(x−i − xi) + (x−i − R)Θ(xi − x−i) where R = 2 is the reward/penalty (for

making a low/high claim), xi is the monetary claim made by player i, and x−i is the monetary

claim made by the other player.

The NE of this game is (2, 2), since whatever i’s opponent claims, it will benefit i to undercut

that claim by 1. However in experiments (not to mention common sense), this NE never arises.
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Even when game theoreticians play the TD with one another for real stakes, they tend to make

claims that are not much lower than 101, and almost never make claims of 2.

For simplicity, we consider a rationality game based on the TD concrete game where both

players can only choose either to be rational or irrational. When both players are fully rational,

the expected utility to both is 2, i.e., E(ui | β1 = ∞, β2 = ∞) = 2 for both players i. Now say

that player i is rational while the other player is irrational. This results in the expected utility

E(ui | xi, β−i = 0) = 1
100

([

∑xi−1
y=2 (y − 2)

]

+ xi +
[

∑101
y=xi+1(xi + 2)

])

for all of i’s possible concrete

game moves xi. The (integer) maximum of this is at xi ∈ {97, 98}. The associated expected

utility is E(ui | βi = ∞, β−i = 0) ' 49.6 (see supplemental online materials). Continuing in this

way gives rationality game utility functions with the following (rounded) values:

Player 2 rationality
0 +∞

Player 1 rationality
0 (34.8, 34.8) (53.3, 49.6)

+∞ (49.6, 53.3) (2, 2)

(9)

This rationality game has two pure strategy NE, (β1, β2) = (0,∞) and (β1, β2) = (∞, 0).

The associated distribution P(x1) for the first of these rationality NE is uniform. The associated

P(x2) instead has half its mass on x2 = 97, and half on x2 = 98. The two distributions for the

other pure strategy rationality NE are identical, just with P(x1) and P(x2) flipped. (As an aside,

note that if one of the players is irrational and the other rational, it is better to be the irrational

one of the two players rather than the rational one.)

There is also a symmetric mixed strategy NE of the rationality game, at which both ra-

tionality players choose β = 0 with probability .78. The associated marginal distributions

P(xi) are identical for both i’s: P(xi = 2) ' 5.8%, P(xi = 97) = P(xi = 98) ' 9.5%, and

P(xi) ' 0.8% for all other values of xi. (Note that because P(β1, β2) is not a delta function,

P(x1, x2) ! P(x1)P(x2).) Uniformly averaging over these three NE gives a P(x) that is highly
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biased to large values of x, in agreement with experimental data.

We can do the same analysis for other values of R besides 2. When R grows, the mixed

strategy equilibrium of the rationality game places more weight on the persona ∞. This makes

P(x) become more weighted towards low values. In fact, when R gets larger than ∼ 38.2, the

two pure strategy NE of the rationality game disappear, and the mixed strategy NE reduces to

the pure strategy where both players are fully rational. So for such values of R, the players are

fully rational. These results agree with experimental data (28) on what happens as R changes.

In some real-world scenarios, the rationality that every player adopts is made known to all

the other players before play of the realized game. In other situations however, each player in

the realized game only knows her own rationality, together with the fact that her opponents are

humans. When the rationality game has a mixed strategy NE (as does the TD), this means that

no player of the realized game explicitly knows the rationalities of any player other than herself.

The framework outlined above has to be extended to deal with such scenarios. Formally, this

extension is similar to “Bayesian games” (1, 2). The idea is that each player exploits common

knowledge (in the game theory sense, of knowing the possible moves of one another, etc.) to

infer the rationality mixed strategies of the other players. This extension is presented in the

supplemental online materials along with a related one that addresses the possibility of multiple

rationality game NE, as occurs for examples in the TD concrete game.

In the scenarios considered so far the set of “personas” that a player can commit to before

start of the realized game is some subset of the three rationalities {−∞, 0,+∞}. There is little

reason to believe that real human beings are so severely limited in the set of personas they

can choose among. One slightly richer space of personas arises by extending the concept of

“rationality” to all real numbers: if player i chooses the rationality βi ∈ R, then she commits to

play the mixed strategy

Pi(xi) ∝ exp[βiEP−i(ui | xi)] ∀xi (10)
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in the realized game. As an example, the rationality βi = 0 means that player i is irrational in the

realized game and the limit βi → +∞means she is fully rational. (More precisely, one of the NE

of the concrete game arises in the realized game in the limit of βi → +∞ for all players i (33).)

Similarly βi → −∞ corresponds to anti-rationality. The set of values βi allowed to player i can

be any (potentially infinite) subset of R, and such sets may vary among the players.1

Given any vector $β of such real-values for all of N players in a game, there is always at

least one joint mixed strategy P(x) that satisfies Eq. 10 simultaneously for all players i. Such

a P is known as a (logit) Quantal Response Equilibrium (QRE) (32, 33, 35, 36). So each

$β ∈ RN specifies a QRE P(x), which in turn specifies expected utilities for all of the players.

We can write those expected utilities as E(ui | $β), where i ranges over the players. In this

way the QRE concept gives us N mappings from RN into R, fi : $β → E(ui | $β). Just as

with the rationality games discussed above, we can view these N functions fi as the utilities

for N rationality game players, each of whom sets a separate component of the vector $β. The

rationality games discussed above are just the special case of such a generalized rationality

game where each βi is restricted to some associated subset of {−∞, 0,∞}.

As an example, consider again the two-player game with utility functions given in Table 2.

If the set of allowed $β is all of R for both players, one can show that there is a unique pure

strategy equilibrium of the rationality game at the pair $β = (ln(5/2)− ε,∞) where ε is arbitrarily

small (see supplemental online materials). At that $β, neither player i can improve her associated

expected utility by changing βi.2

1See (34) for an investigation of the relation between Eq. 10 and a model-independent measure of the “degree
of rationality” of a player who adopts a particular mixed strategy when the other players adopt a specified particular
(potentially non-equilibrium) mixed strategy. Also see those references for a discussion of the relationship between
Eq. 10 and the canonical ensemble of statistical physics. Intuitively speaking, the parameter βi in Eq. 10 can be
viewed as the reciprocal of a “temperature”. In this, it is formally true that a rational person is “cold”; they have
low temperature. Similarly an irrational person is “hot”. In optimization usually such a temperature is viewed as
determining a player’s exploration / exploitation tradeoff as she searches for what strategy to adopt. (For example
this is the case in simulated annealing.) However games like those in Table 3 and 5 indicate temperature plays
other roles in optimization as well.

2As an aside, such rationality games can have phase transitions, even for concrete games having two players
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As another example of this richer set of personas, we now consider the famous Ultimatum

Game (UG) (4, 6, 37–39). The UG is a two-player game where the first player, the Buyer (B)

selects some x ∈ [0, 1] and offers it to the Seller (S ). S can either accept or refuse B’s offer. If

she accepts, S gets a utility of x, and B gets a utility of 1− x. If S refuses the offer, both players

get a utility of 0.

The NE for this game is for S to accept whatever offer B makes, and therefore for B to

make the minimal possible offer. In experiments though, often S refuses an offer if it is too low,

in essence saying “I’d prefer nothing to such an insultingly low offer.” In keeping with this,

typically B makes an offer substantially higher than the minimum.

For simplicity, we will consider a rationality game based on the UG concrete game where B

is always perfectly rational, but S can choose essentially any positive rationality value β. Intu-

itively, if S is sufficiently irrational (i.e., β is low enough), then for her probability of accepting

some particular offer x to be significantly greater than 1/2, that offer must be substantially

greater than 0. So if B knows that S has that “sufficient irrationality”, B has to make an offer

“substantially greater than 0” to have a probability “significantly greater than 1/2” of getting

any non-zero utility at all. Since S prefers offers that are as large as possible, this means that it is

in S ’s interests to be “sufficiently irrational”, and therefore for B to make an offer “substantially

greater than 0”.

Carrying through the calculation more formally, we find that at the equilibrium of the ratio-

nality game S adopts the pure strategy β∗ = 7.60. Any value of β gives a unique associated offer

value that is optimal for B, which we write as x(β); x(β∗) = 0.21. The associated probability that

S accepts the offer is 0.83. While it is hard to directly compare these results to experimental

data (due to idiosyncrasies in the protocols in the experiments in the literature), they are broadly

with two moves each. More precisely, the log of the normalization constant for the QRE distribution (i.e., the
log of the QRE analog of a “partition function”) can be discontinuous as a function of $β (see supplemental online
materials). While in condensed matter physics phase transitions only occur for infinite-particle systems, in game
theory they can arise even for only two players.
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consistent with that data.

One explanation that has been offered for experimental results concerning the UG is that B

has a ‘fairness bias’ built into her utility function. Other explanations involve ad hoc cognitive

models that restrict the capabilities of the players. In contrast, the explanation offered by ratio-

nality games does not posit modifications to the utility functions of the players, nor limits their

cognitive capabilities. In addition, the focus shifts from B to S , saying, in essence, that S would

benefit by being spiteful — and therefore will be, which fact B must account for.

Note though that in the rationality game considered above, all of S ’s allowed personas only

concern her own expected utility (via her rationalities). Introspection suggests that in the real

world, S sometimes adopts personas that also concern B’s expected utility. (This may be why

in experiments S sometimes rejects offers as “too low”, in conflict with the prediction of the

rationality game considered above.) For example, a “fairness bias” can be modeled with such a

persona.

This raises the question of whether there are games where a player can benefit by adopt-

ing a persona which involves the expected utilities of that player’s opponents, just as there are

games where she can benefit by adopting a finite rationality persona. Such personas involv-

ing the expected utilities of one’s opponents might implement many types of “other-regarding

preference”, including altruism as well as fairness biases. If a player benefits by adopting a per-

sona with such an other-regarding preference in a particular game, then that “other-regarding”

preference is actually optimal for purely sel f -regarding reasons.

To investigate this, let {uj : j = 1, . . .N} be the utility functions of the original N-player

concrete game. Then rather than have the possible personas of player i be parameterized by

a set of rationality real numbers, {βi}, have them be parameterized by a set of distributions

{ρi} each of the form (ρ1i , ρ2i , . . . , ρNi ). By adopting persona ρi, player i commits to playing the

realized game with a utility function
∑

j ρ
j
i u j rather than ui. So pure selfishness for player i is
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ρ ji = δ(i, j). Altruism is a ρ ji that places probability mass on more than one j. (Fairness is a

slightly more elaborate persona than these linear combinations of utilities, e.g., the commitment

to play the realized game with a utility function [(N−1)ui−
∑

j!i u j]2.) To distinguish them from

persona games in general, we refer to persona games where some personas involve the (concrete

game) utilities of multiple playes as “other-regarding games”.

To illustrate this, consider the two-player two-move concrete game with the following utility

functions:
[

(2, 0) (1, 1)
(3, 2) (0, 3)

]

(11)

There is one pure strategy NE of this game, at (T,R). Say that both players in the associated

other-regarding game only have 2 possible pure strategies, ρ ji ! δi, j and ρ
j
i ! 1 − δi, j, which

we refer to as sElfish and sAintly, respectively. So for example, if Row chooses selfish while

Col chooses saintly, then the equilibrium is (D,L). This gives both players a higher utility than

if both were selfish. Continuing this way, we get the following pair of other-regarding player

utility functions:

Col ρ
E A

Row ρ
E (1, 1) (3, 2)

A (0, 3) (3, 2)

(12)

The pure strategy NE of this other-regarding game is (E,A), i.e., the optimal persona for Row is

to be selfish, and for Col is to be saintly. Note that both players benefit by having Col be saintly.

So for example Row would be willing to pay up to 2.0 to induce Col to be saintly. Perhaps more

surprisingly, Col would be willing to pay up to 2.0 to be allowed to completely ignore her own

utility function, and work purely in Row’s interests.

In the case of the PD concrete game, other-regarding personas can lead the players in the

realized game to cooperate. For example, say that each player can choose either to be selfish, or
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to be “charitable”, meaning that ρ is uniform, so that the player has equal concern for her own

utility and her opponent’s utility. Then for the PD concrete game in Table 1, the equilibrium

of the associated other-regarding game is for both players to be charitable. That in turn leads

them to cooperate in the realized game. They do this for purely self-centered reasons, in a game

they play only once. Such effects might account for some of the experimental data showing

a substantial probability for real-world humans to cooperate (40). (A detailed exploration of

other-regarding games can be found in (41).)

Discussion. Persona games highlight the distinction between games against Nature and games

with other objective-maximizing players. In particular, when the concrete game is a game

against Nature, the rationality equilibrium is always β = ∞, regardless of the details of the

concrete game. This is not the case when the concrete game involves other players.

In addition to having other players in the concrete game, another necessary condition for a

player to adopt a persona other than perfect rationality is that she believes that the other players

are aware that she can do that. The simple computer objective-maximizing algorithms currently

used in game theory experiments do not have such awareness. Accordingly, if a human knows

she is playing against such an algorithm, she should always play perfectly rationally, in contrast

to her behavior when playing against humans. This distinction between behavior when playing

computers and playing humans agrees with much experimental data, e.g., concerning the UG

game.

Typically that calculating a persona equilibrium involves far more computational work than

calculating the equilibria of the associated concrete game. (For every possible joint persona,

one has to calculate the associated realized game equilibria, and only then can one calculate

the persona game equilibria.) Hence, one would expect persona games only in members of a

species with advanced cognitive capabilities, who have a lot of interactions with other animals
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that can also play persona games. A member of such a species who plays persona games well

has “high social intelligence”.

For similar reasons, one would expect the persona set of any animal not to be too large. (A

large set both increases the burden on the player with that set, and with the other players she

plays against.) Computational considerations might also lead an animal to use a similar persona

set across those games that she is likely to encounter in her life. Phenomenologically, such a

persona is what is similar to what is colloquially called a “personality”.

What happens if the players misconstrue the persona (or more generally persona sets)

adopted by one another? Intuitively, one would expect that the players would feel frustrated

when that happens, since in the realized game they each do what would be optimal if their op-

ponents were using that misconstrued persona — but they aren’t. This can be viewed as a rough

model of what is colloquially called a “culture gap”, or a “generation gap”, as the case might be.

(See supplemental online materials for futher speculation on anthropological and evolutionary

implications of persona games.)

There are many open issues, both experimental and formal, associated with the current per-

sona game framework (see the supplementary online material). Future extensions of the persona

game framework will involve integrating it with previous work on bounded rationality involv-

ing computational restrictions, repeated games in which there are reputation effects, games on

networks, punishment, etc. But even based only on the preliminary results recounted above, it

appears that persona games may provide the formalization, recently called for by Basu (27), of

“the idea of behavior generated by rationally rejecting rational behavior ... (which is necessary)

to solve the paradoxes that plague game theory”.

Supplemental Online material
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In these supplemental online materials we present formal definitions of persona games, and

then make the calculations mentioned in the text concerning the UG, TD, and phase transitions.

As might be expected given the breadth of scenarios that persona games can model, their formal

definition takes some care. We start by introducing our notation.

Notation. Define N ≡ {1, 2, . . .}, fix a positive integer N, and define N as the integers

{1, . . . ,N}. We will occasionally use curly brackets to indicate a set of indexed elements where

the index set is implicit, being allN . For any set Z, |Z| indicates the cardinality of Z.

We use “P(.)” to indicate a probability distribution (or density function as the case might

be). An upper case argument of P(.) indicates the entire distribution (i.e., the associated random

variable), and a lower case argument indicates the distribution evaluated at a particular value.

When defining a function the symbol “!” indicates that the definition holds for all values of the

listed arguments. So for example, “ f (a, b) !
∫

dc r(a)s(b, c)” means that the definition holds

for all values of a and b.

We will use the integral symbol with the measure implicit. So for example for finite X,

“
∫

dxX” implicitly uses a point-mass measure and therefore means a sum. Similarly, we will

be loose in distinguishing between probability distributions and probability density functions,

using the term “probability distribution” to mean both concepts, with the context making the

precise meaning clear if only one of the concepts is meant.

The unit simplex of possible distributions over a space Z is written ∆Z. The interior of a

set A (with implicit topology) is written A0, e.g., the interior of ∆Z is ∆0Z . Given two spaces

A, B, we write ∆A×B to mean the unit simplex over the Cartesian product A × B. Similarly,

∆A|B indicates the set of all functions from B into ∆A, i.e, the set of all conditional distributions

P(A | B). Given a set of N finite spaces, {Xi}, we write X ≡
!

i∈N Xi and for any x ∈ X, use xi

to indicate the i’th component of x. We use a minus sign before a set of subscripts of a vector
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to indicate all components of the vector other than the indicated one(s). For example, we write

X−i ≡
!

j∈N : j!i X j and use x−i to indicate the ordered list of all components of x except for xi.

We define ∆X as the set of distributions in q ∈ ∆X that are product distributions, i.e., that

are of the form q(x) !
∏

i∈N qi(xi). Similarly, we define ∆X−i as the set of product distributions

in ∆X−i . In the usual way, for any q ∈ ∆X and i ∈ N , we define the distribution q−i ∈ ∆X−i
as
∏

j∈N : j!i q j. Finally, given any finite Z and p ∈ ∆Z , we write the Shannon entropy of p as

S (p) ! −
∫

Z p(z)ln[p(z)].

Objective games. Say we are given a set of N (pure) strategy finite spaces, {Xi}. Then we

refer to any function that maps ∆X → R as an objective function for X. As an example, for a

fixed utility function u : X → R, the expected value of u under q ∈ ∆X, Eq(u), is an objective

function. Any pair of a set of finite strategy spaces and an associated set of one objective

function for each stategy space is called a (strategic form) objective game. Often we leave the

indices on the elements of an objective game implicit, for example referring to (X,U) rather

than ({Xi}, {Ui}).

Objective games provide a clean way to model scenarios in which some of the players use

a conventional (expected utility) best response, and the others instead use a quantal response.

Note in this regard that one cannot model an irrational player who always plays a uniform mixed

strategy as an expected utility best-responder for some appropriate utility function. In particular,

if a utility function is independent of x, then any distribution over x can arise at equilibrium,

depending on the strategies of the other players; optimizing this utility function does not always

pick out the uniform distribution associated with irrationality. On the other hand, a player with

a free utility objective (i.e., a quantal response player) where β = 0 always plays a uniform

distribution over x, exactly as desired.

Best responses in objective games, extensive form objective games, Nash equilibria of ob-
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jective games, and (trembling hand) perfect equilibria of objective games are defined in the

obvious way. We write the Nash equilibria of an objective game (X,U) as

E(X,U) ! {q ∈ ∆X : ∀i ∈ N ,∀q′i ∈ ∆Xi ,U(q′i , q−i) ≤ U(qi, q−i)}. (13)

We will sometimes be loose with the terminology and refer to player i as “making move qi ∈

∆Xi”, even though her pure strategy space is Xi, not ∆Xi .

As an example, let each objective functionUi be an expected utility Eq(ui). Then E({Xi}, {Ui})

is the set of Nash equilibria of the N-player noncooperative game with pure strategy spaces {Xi}

and utility functions {ui}. We call such an objective game a “utility game”. As another example,

associate with each player i a non-zero real number βi. Define each player i’s objective function

Ui as the free utility, Eq(ui)+β−1i S (qi). Then E(X,U) is the set of (logit) QRE’s of the N-player

game with pure strategy spaces {Xi} and logit exponents {βi} (20,33, 42, 43).3

As a final example, an N-player Bayesian objective game is any triple (X, A, PA) where {Xi}

is a set of N finite strategy spaces, each of the N separate Ai is a set of objective functions with

domain ∆X, and PA is a product distribution over A, PA(a) !
∏

i∈N PAi (ai). For simplicity, in

this paper we will always take any Ai to be finite.

An equilibrium of a Bayesian objective game is any set of conditional distributions {Pi(Xi |

Ai) ∈ ∆Xi |Ai : i ∈ N } where for all players i and associated objectives ai such that PAi (ai) ! 0,

there is no alternative conditional distribution P′i(Xi | Ai) for which
∫

da−i PA−i(a−i)ai[P−i(X−i | a−i)P′i(Xi | ai)] >
∫

da−i PA−i(a−i)ai[P−i(X−i | a−i)Pi(Xi | ai)]

(14)
3There are at least two ways to incorporate refinements of Nash equilibria into the definition of objective

games. First, many refinements of objective game equilibria can be expressed simply by modifying the objective
functions. For example, if for every player i, Ui(q) ! Eq(ui), then we can impose many refinements by modifying
Ui(q) to have some value less than minx∈X[ui(x)] if q violates the refinement condition. As an alternative, one could
define an “equilibrium concept” as a correspondence taking any pair (X,U) to a subset of ∆X, and then have the
specification of the equilibrium concept be part of the specification of an objective game. E is one possible choice
for such a concept, but by choosing other ones, we could have the objective game equilibria correspond be any
desired refinement of the Nash equilibria.
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So long as all objective functions ai obey certain benign properties, Kakutani’s fixed point

theorem can be applied to the associated best-response correspondences in the usual way to

establish that there is always such an equilibrium. In particular, if for all players i each ai ∈ Ai

is the expected value of some utility function over X, then Eq. 14 reduces to the definition of

a conventional Bayesian game. So for such sets {Ai}, there is always an equilibrium of the

associated Bayesian objective game.

Persona sample games. The foregoing provides the machinery for us to define and analyze

several kinds of persona game. Here we present four such kinds of game. (As usual, which

type of game to use to model a particular experiment depends on the precise details of that

experiment.)

First, define a persona world as any triple

({Xi : i ∈ N }, {Ui : i ∈ N }, {Ai : i ∈ N }) (15)

where {Xi} is a set of N finite strategy spaces, {Ui} is an associated set of N objective functions

with domain ∆X, and each Ai is a set of objective functions with domain ∆X. For simplicity, in

this paper we will always take any Ai to be finite. We refer to an ai ∈ Ai as a persona of the i’th

player. Note that any such persona is a mapping from ∆χ into R.4

We refer to any N-tuple a = (a1, . . . , aN) ∈ A ≡ A1 × . . . × AN of every player’s persona

as a “joint persona” of the players. We write ∆A to mean the members of ∆A that are product

distributions, i.e., that are of the form PA(a) =
∏

i∈N PAi (ai). We define ∆A−i similarly. We also

define ∆X|A to mean the members of ∆X|A that are product distributions, i.e., that are of the form

P(x | a) =
∏

i∈N P(xi | ai) for all a ∈ A, and make a similar definition for ∆X−i |A−i .
4At the expense of more notation, we could extend the domains of the objective functions {Ui} to be ∆X,A. This

would allow us to model scenarios in which a player of the persona game has a priori preferences over her possible
personas.
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Given a persona world and a player i ∈ N , an associated summarizer wi is a real-valued

measure of i’s desire for the “realized game” specified by any possible joint persona a ∈ A. In

this paper we restrict attention to summarizers wi that can be expressed as wi(a) ! w̄i(Q(a))

where Q is a mapping from a into the associated set of equilibria of (X, a) for some pre-fixed

equilibrium concept. An example of such a wi is the uniform average of the values of Ui evalu-

ated at the NE of the realized game (X, a). We refer to such a summarizer as the equilibrium-

averaging summarizer. A variation, motivated by the entropic prior and its use in predictive

game theory (42), is to weight the value of Ui at each NE q in this average by eαS (q)/Z, where

α is the entropic prior constant and Z is a normalization constant. More generally, wi(a) could

also reflect concerns like the computational cost to i of evaluating those NE. As shorthand, we

often abbreviate ({Xi : i ∈ N }, {Ui : i ∈ N }, {Ai : i ∈ N }, {wi : i ∈ N }) as (X,U, A,w).

From now on, we implicitly assume that for any persona world that we will consider,

(X,U, A), for every a ∈ A, E(X, a) is non-empty. (As an example, this is true when either

every persona objective function ai is either an expected utility or a free utility.) Accordingly,

given a persona world (X,U, A) and summarizer w, every joint persona a specifies a real number

for each player i according to the rule

Wi(a) = w̄i[E(X, a)]. (16)

As an example, say that each ai ∈ Ai is the free utility for some associated parameter βai and

some fixed utility ui. (So Ai is parameterized by a set of non-zero real numbers {βai : ai ∈ Ai}).

Then the joint persona of the players can be viewed as an N-tuple of logit exponents, in the

sense that the equilibrium for the realized game associated with a joint persona a is a QRE with

logit exponents given by βa ≡ (βai : i ∈ N ). Say we also have each each Ui(q) be the expected

value under q of a utility function ui : X → R. Also have w̄i be the equilibrium-averaging

summarizer. Then Wi(a) is the uniform average of the expected utilities of player i over the
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QRE’s of the game for the vector of logit exponents βa.

The summary persona sample game for persona world (X,U, A) and summarizer w is the

N-player (noncooperative) utility game where each player i’s space of pure strategies is Ai and

her utility function is Wi. Since we are assuming that for every a ∈ A the associated strategic

form game (X, a) has a NE, the summary persona sample game is a well-defined strategic form

noncooperative game, and therefore always has a NE. Such a NE is a product distribution over

joint personas, PA(a) !
∏N

i=1 PAi (ai). We refer to (X,U) as a “concrete game”, and any (X, a) as

a “realized game”. Summary persona sample games based on any particular refinement of the

NE concept for the realized game are defined in the obvious way.

Note that if each wi is an equilibrium-averaging summarizer, then at any equilibrium PA

there are two averages defining the associated expected value of each Wi: The average over a

according to PA(a), and then for each a, the average over all NE q(x) for that a. In addition, if

Ui is an expectation of a utility function ui(x), then for each NE q there is yet another average,

of the values of ui(x) distributed according to q(x).

Typically a summary sample equilibrium PA is invariant under any affine transformation

of Ai for any i ∈ N . To illustrate this, write such a transform as ai → Cai + D ∀ai ∈ Ai,

and consider again the example above where each ai ∈ Ai is a free utility. Applying our affine

transform to such an Ai is equivalent to multiplying both ui and [βai]−1 for each ai ∈ Ai byC, and

then adding D to ui. Doing this won’t affect the value of eβai [Eq−i (ui |xi)−Eq−i (ui |x
′
i ) for any xi, x′i , q−i.

Accordingly such a transform won’t affect the equilibrium q(s) associated with any joint set of

free utilities, a, i.e., it won’t affect E(X, a) for any joint persona a. Therefore it won’t affect

any function Wj, and so won’t change the summary sample equilibrium PA. (The other types

of persona equilibria discussed below also typically obey such an invariance under an affine

transform of any Ai.)

Just as persona games are a “meta” version of concrete games, so one could have a “meta”
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version of a persona game. This would mean no longer assuming that each player is perfectly

rational in the persona game, but allowing other personas for the play of that game as well.

In particular, if the persona set of each player i is the same size as her move space Xi, then

the persona game constitutes a “dual” version of the concrete game. One can investigate how

iteratively taking the dual of a dual of such a game moves one through the space of all games.

Say we have an experimental scenario in which, intuitively speaking, a player i is able to

adopt a “persona” that consists of an objective function ai combined with the restriction that i

can only choose a strategy from some set X′i ⊂ Xi, no matter what personas are adopted by the

other players. We can model such scenarios as summary persona sample games. To do this,

we redefine the value of ai(q) for all q ∈ ∆X such that qi(xi) ! 0 for some xi " X′i . The only

thing required of this redefinition is that it ensures that ai(q) < ai(q′) for every q′ ∈ ∆X that

obeys q′i(xi) = 0 ∀xi " X′i . (This redefinition implicitly assumes that the original function ai is

bounded.) Such a redefinition means that persona ai will place zero probability mass on xi in

the game (X, (ai, a−i)), no matter what distribution q−i the other personas a−i jointly choose.

The most natural way to implement a summary persona sample game for a persona world

(X,U, A) and equilibrium-averaging summarizer w is with a two-step process. First, the N

players play the persona game, based on common knowledge in the usual way. This produces

a Nash equilibrium, i.e., a product distribution over joint personas, PA(a). Next, that Nash

equilibrium is sampled to produce a joint persona, a′. At the end of this first step, each player i

adopts persona a′i . The resultant joint persona is then made known to all the players (hence the

name “sample persona game”), so that that joint persona becomes common knowledge. (See

the section below on communication of personas and natural selection.)

In the second step, in the usual way the N players play a realized objective game with their

objective functions set by a′: (X, a′). That produces a set of possible equilibrium joint product

distributions E(X, a′). Finally, each player i receives “payoff” w̄i(E(X, a′). Typically, this payoff
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is actually an expectation value, over all q ∈ E(X, a′), of the associated value Ui(q). The goal of

each player i in such a persona game is to choose PAi (ai) so that, given the choices PA−i(a−i) of

the other players, the expected value of the payoff she receives at the end of the second step is

as large as possible.

Persona distribution games. In the version of the two-step process presented above, each

player i commits both to adopt her persona choice in the second step, and to communicate that

persona choice to all the other players just before the second step. It is presumed that these two

commitments are common knowledge. (This common knowledge is in addition to the usual

common knowledge of the objective functions and persona sets of all the players.)

However when there is only one equilibrium PA and it is a pure strategy, these two commit-

ments can be combined into a single, weaker commitment. For such a situation, say that each

player i only commits to adopt that persona choice specified in the persona sample equilibrium

PA, whatever that persona is. As before, assume that all commitments are common knowl-

edge. Also as before, assume that the objective functions and persona sets of all the players are

common knowledge. This means that every player j ! i can calculate the equilibrium persona

ai of player i. Accordingly, this minimal additional common knowledge beyond the objective

functions and persona sets — that i commits to adopt her equilibrium persona — allows the

other players to deduce what persona player i will adopt in the second step. Importantly, they

get this information of what persona player i will adopt without any explicit communication

from player i of what persona she adopts.

The situation when the equilibrium PAi is not a pure strategy is more subtle. In such situ-

ations, our additional common knowledge would only tell the other players what distribution

PAi commits to sampling, not what actual sample of that distribution is generated. This means

that those other players would have to play a Bayesian best response to PAi . We refer to such
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a scenario where the players all commit to play the Bayesian objective game with PA set to an

equilibrium of the summary persona sample game as a summary persona distribution game.

We refer to the Bayesian objective game arising in a summary persona distribution game as a

realized (Bayesian) game.

Note that there is no role for a summarizer in the realized Bayesian game that is played after

the joint persona distribution is set in a summary persona distribution game. (The summarizer

is only used to set persona distributions, with no role once those distributions are set.) Also,

note that if the equilibrium PA of a summary persona distribution equilibrium is a pure strategy,

then the realized Bayesian game is just a conventional objective game, where players have fixed

objective functions. That means that the entire two-step process of the summary persona distri-

bution game is equivalent to the summary sample game. (So in particular, all the examples of

persona games in the text involving pure strategy PA’s are both summary persona sample and

summary persona distribution equilibria.) It is only when where there are mixed persona equi-

libria of a summary persona sample game that there may be a difference in outcomes between

that game and the associated summary persona distribution game.

A summary persona distribution game can be viewed as a model of many different physical

scenarios. One is where all N players think they are playing a summary persona sample game,

and determine their joint distribution PA accordingly. Each player i then samples PAi , to get an

associated persona ai. However at the next, persona revelation step, the players all balk, and

refuse to communicate their personas. (Or alternatively, the experimenter prevents them from

communicating their personas). Accordingly, all the players have to play the realized Bayesian

game given by PA.

As another example, say that before play each player i communicates to all other players

a single bit: whether she will or will not adopt the summary persona sample equilibrium PAi .

(Implicitly, to not adopt that equilibrium PAi means she instead adopts the full rationality per-
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sona, Ui.) Say that the players all communicate that they will adopt that equilibrium. Finally,

say that the realized game is an anonymous, one-shot game, without any inter-player commu-

nication of persona samples before that game. In this scenario, the players are forced to play

the realized Bayesian game, using the persona sample equilibrium PA. So we have a summary

persona distribution game.

Note that the communication among the players of the bit that “they will adopt the sum-

mary persona sample equilibrium PA” does not have to be direct communication. For example,

say that human beings are pre-disposed to playing persona sample games, and all the players

know that. Then those bits would be communicated simply by having every player know that

the other players are all human beings. (Of all the models presented in this paper, this one

where the players are all told simply that the other players are human beings is perhaps the

tightest match to what actually happens in typical real-world experiments involving one-shot

anonymous games.)

If human beings do have such a pre-disposition to play persona sample games that disposi-

tion may well have a genetic component. (See the section below on communication of personas

and natural selection.) Such a pre-disposition may arise even without evolutionary pressures

however. Many (if not most) real-world games are not anonymous. Rather they involve face-

to-face interaction, in which at least some information concerning persona choices is conveyed.

This means that human beings are accustomed to playing persona sample games, not to playing

games in which they know nothing of the personas chosen by their opponents. So due to simple

“cognitive inertia”, one might expect human subjects to be pre-disposed to behave as though

they were playing a persona sample game, even if they are actually involved in an anonymous

one-shot game experiment.

Note though that if the players are in an experiment in which they repeatedly engage in an

anonymous game, then such cognitive inertia might fade, and the players learn that they are
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not actually involved in the kind of persona sample game to which they are accustomed. This

might lead each human in the experiment to eventually play the concrete game directly, with no

concern for personas and the like. This would mean that each player i assumes that the other

players will be fully rational in the realized game without any regard for any persona that imight

adopt. Such an assumption would lead each player i to be fully rational. (This in turn would

validate the assumption of the other players in her rationality, resulting in a sort of equilibrium of

assumptions.) Broadly speaking, such a transition to where all subjects play the concrete game

directly without any concerns for personas is what is seen in experiments involving repeated

anonymous games, where repeated anonymous play leads to more “rational” behavior.

As a technical aside, note that if there are multiple summary persona sample equilibria PA

(pure or mixed), then there must be some way for all the players in the associated realized

Bayesian game to agree on one of those equilibrium PA. Of course, this same requirement

arises in conventional noncooperative games with multiple Nash equilibria, where all the players

have to agree on which equilibrium joint strategy to adopt. In those conventional games, if

no refinement is used to replace the Nash equilibrium concept, the requirement to agree on

which NE to adopt is met through some sort of coordination mechanism involving common

knowledge, purification, previous interactions, or the like. Without getting into any detailed

modeling, we implicitly presume the same sort of mechanism is used with summary persona

distribution games. (See (42) for a way to avoid all such issues.)

Extensive persona games. A formal shortcoming of summary persona games is the need to

specify a summarizer for each persona player. One way to avoid this is to modify the “two-

step” process of a summary persona sample game to be an extensive form game that involves

two stages. Say we are given an N-player persona world (X,U, A) where all spaces are finite.

Consider an associated set of N+
∑

i∈N |Ai| distributions {P(Ai) ∈ ∆Ai , q(X
ai
i ) ∈ ∆Xi : i ∈ N , ai ∈
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Ai} where each space Xaii is a copy of Xi. Intuitively, we can view each distribution P(Ai) as

the mixed strategy of the i’th persona player, and each distribution q(Xaii ) as the mixed strategy

of the realized player who corresponds to persona player i when that persona player adopts

persona ai. Now say that the following two conditions are met:

∀i, ! P′ ∈ ∆Ai :

Ui

















∫

da1da2 . . . P′(ai)P(a−i)
∏

j∈N

q(Xajj )

















> Ui

















∫

da1da2 . . . P(ai)P(a−i)
∏

j∈N

q(Xajj )

















(17)

and

∀i, ai ∈ Ai, ! q′ ∈ ∆Xi :

ai

















q′(Xaii )
∏

j!i

q(Xajj )

















> ai

















q(Xaii )
∏

j!i

q(Xajj )

















. (18)

Then we say that the distributions {P(Ai) ∈ ∆Ai , q(X
ai
i ) ∈ ∆Xi : i ∈ N , ai ∈ Ai} form an extensive

persona sample equilibrium for the persona world (X,U, A).

We now prove that any persona world (X,U, A) has an extensive persona distribution equi-

librium if every Ui is an expected utility and every ai is either an expected utility or a free utility.

To do this it is necessary to re-express Eq.’s 17, 18 as being NE conditions for an objective game

involving N +
∑

i∈N |Ai| players. We will see that not only must such an objective game have an

NE, it must have an honest NE (44).5

To begin, letting Ui be the expected value of a utility function ui, recast the left-hand side in

Eq. 17 as
∫

da′
∏

j∈N

(
∏

a′j∈Aj

dx
a′′j
j ) ui(x

a′1
1 , x

a′2
2 , . . .)P

′(a′i)P(a′−i)
∏

j∈N

(
∏

a′′j ∈Aj

q(x
a′′j
j ))

(19)
5Typically when some objectives are expected utilities and some are free utilities the NE of the objective game

are not trembling hand perfect. So some refinement other than perfection must be used to preclude non-credible
threats in such scenarios. Honesty is such a refinement.
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and similarly for the right-hand side. These integrals are averages over moves by N +
∑

i∈N |Ai|

players. To simplify the associated manipulations, write the space of possible joint moves of all

N +
∑

i∈N |Ai| players as {(a, xA11 , x
A2
2 , . . .) : a ∈ A, X

Ai
i ∈ Xi∀i}. (So each a in any element of this

space is an ordered list of N separate personas ai, one for each i ∈ N , and similarly each xAii

is an ordered list of |Ai| separate elements from Xi, one for each possible persona choice by the

i’th persona player.) Given this notation, replace the utility function ui in Eq. 19 with

Ti(ã, x̃A11 , x̃
A2
2 , . . .) ! ui(x̃ã11 , x̃

ã2
2 , . . .), (20)

evaluated for the argument (a′, xA11 , x
A2
2 , . . .).

Having done this, the integral in Eq. 19 becomes the expected value of the function Ti

over the joint moves (a′, xA11 , x
A2
2 , . . .), evaluated under a product distribution over those moves,

P′(a′i)P(a′−i)
∏

j∈N (
∏

a′′j ∈Aj
q(x

a′′j
j )). Accordingly, the entire expression in that equation is an

expected utility for a player setting a mixed strategy P(Ai) for an objective game Ω involving a

total of N +
∑

i∈N |Ai| players who have joint move (a′, xA11 , x
A2
2 , . . .).

Similarly, if ai is a free utility with logit exponent βaii and utility function u
ai
i , we can recast

the left-hand side in Eq. 18 as
∫

∏

j∈N

(
∏

a′′j ∈Aj

dx
a′′j
j ) u

ai
i (x

ai
i , x

a−i
−i )q

′(xaii )
∏

a′′i !ai

q(xa
′′
i
i )
∏

j!i

(
∏

a′′j ∈Aj

q(x
a′′j
j )) + (βai)

−1
S
[

q′(Xaii )
]

(21)

and similarly for the second expression. (Note that many distributions in the integrand marginal-

ize out.) Now replace the utility function uaii in Eq. 21 with

Vai
i (ã, x̃

A1
1 , x̃

A2
2 , . . .) ! uaii (x̃

a1
1 , x̃

ã2
2 , . . .), (22)

evaluated for the argument (a, xA11 , x
A2
2 , . . .). Having done this, the integral in Eq. 21 becomes

an expectation value of the utility function Vai
i over joint moves (a′, xA11 , x

A2
2 , . . .), evaluated
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under the product distribution q′(xaii )
∏

a′′i !ai
q(xa

′′
i
i )
∏

j!i(
∏

a′′j ∈Aj
q(x

a′′j
j )). Accordingly, the entire

expression in that equation is a free utility for a player setting q(Xaii ) for the objective game Ω.

Similar conclusions hold if ai is an expected utility. Combining and using Coroll. 1 of (44),

we see that the objective game Ω always has an honest NE, as claimed.

Obvious variations of the type of extensive persona sample game defined here has other

kinds of communication between the persona players and the realized game players, along

the lines of conventional game theoretic extensive games. Other variations involve objective

functions that depend on P(A)
∏

i∈N (
∏

ai∈Ai q(Xi)) in other ways. In particular, a persona player

i could have Ui be a free utility where the entropy term depends on P(Ai) rather than on P(Xi) =
∫

dai P(ai)q(Xaii ).

It is also possible to have a realized Bayesian game be played using the PA that is an equi-

librium of an extensive persona sample game. We refer to such persona games as extensive

persona distribution games, in direct analogy with summary persona distribution games. In

yet another type of persona distribution game, the PA of the realized Bayesian game is not set by

a counterfactual persona sample game, as in summary persona distribution games and extensive

persona distribution games. Rather PA is set so that for all players i, there is no P′Ai ! PAi such

that Ui(q) is higher for the realized Bayesian game based on persona distribution P′Ai PA−i than

it is for the realized Bayesian game based on persona distribution PAi PA−i. Intuitively speaking,

such a persona game is a Bayesian game where all players get to set their prior over their types,

and the equilibrium is where no player would want to change her prior, given the priors of the

other players.

The difference between Persona games and non-credible threats. We now illustrate how

the effects arising in persona sample games differ from those of non-credible threats in conven-

tional extensive form games. Have the utility functions in the concrete game of Table 3 give
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payoffs in a two-stage perfect information extensive form game where both players can make

two moves and Row moves first. So the strategic representation bimatrix is:

player 2: [L,L] [L,R] [R,L] [R,R]
player 1
T (0, 0) (0, 0) (6, 1) (6, 1)
D (5, 5) (0, 6) (5, 5) (0, 6)

(23)

where the 2nd-moving player’s strategy is written as [response to move T by first-moving

player, response to move D by first-moving player].

There is a pure strategy expected utility equilibrium at (D, [L,R]). This one is not subgame

perfect. (The second player is non-credibly threatening to make move L if the first player moves

T.) There is a second utility equilibrium where the first player moves T, and the second player

adopts any mixed distribution with support over the last two of her four pure strategies: [R,

L], [R, R]. The component where the second player makes move [R, R] is subgame perfect.

The other component is not. Summarizing, (T, [R, R]) is the sole subgame perfect utility

equilibrium, and is a pure strategy equilibrium. At this equilibrium, the joint payoff is (6, 1).

Now say that we have an associated summary rationality sample game where the first mov-

ing player’s rationality is fixed to ∞, and the second-moving player can either adopt rational-

ity ∞, 0 or −∞. The consequences of the second-moving player adopting rationality ∞ were

worked out above. If she instead adopts rationality 0, then the first-moving player will pick

T, just like when the second-moving player has rationality ∞; the second-moving player gains

nothing by reducing her rationality.

Finally, consider what happens if the second-moving player adopts rationality −∞. This is

equivalent to her being utility-minimizing rather than utility maximizing, while the first player is

still utility-maximizing. Now (D, [L,L]) is the sole subgame perfect equilibrium of the realized

game. The associated joint payoff is (5, 5). So the second moving player has benefited in

comparison to her utility at the subgame-perfect equilibrium of the concrete game (at which

33



both players are fully rational). So even if we restrict attention to subgame perfect equilibria

of the realized game, the second-moving player benefits by being anti-rational. This illustrates

how the potential benefit of being anti-rational is fundamentally different from the potential

benefit of making non-credible threats.

Elementary properties of rationality games. Define a simple game as a 2-player objective

game where both objectives are expected utilities and the game has a single equilibrium, which

is a joint pure strategy. Note that both players have rationality∞ at that joint strategy.

In the text we have considered some two-player summary rationality sample games with

averaging summarizers where i) both players could choose rationality +∞; ii) the concrete game

was a simple game, and iii) the pure strategy (+∞,+∞) is not an equilibrium of the rationality

game. In such a game at least one rationality player benefits from choosing a finite (but non-

negative) rationality given that the other player is purely rational. (An example is the game in

Table 3.)

In addition, as illustrated in our analysis of the TD, there exist such summary rationality

sample games based on a simple concrete game that have the following properties: 1) At least

one player i has more than two moves in the concrete game; and 2) every rationality player i

would benefit, in comparison to the case where both players have infinite rationality, if instead

i has a particular finite rationality while her opponent is fully rational.

However there is no such summary rationality sample game that has property (2) and is

based on a simple concrete game that has only two possible moves for each player:

Proof: Let the players be Row and Col with moves {T,D} and {L,R}, as usual. Without loss of

generality let the pure strategy objective equilibrium of the simple concrete game be (T,R), and
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have the payoffs there be (0, 0). Accordingly write the utility functions of the concrete game as:
[

(a, b) (0, 0)
(c, d) (e, f )

]

(24)

(under the usual convention that Row’s utility is listed first). Since (T,R) is a NE of the concrete

game, 0 ≥ b, and 0 ≥ e. On the other hand, since (D,L) is not a NE, either f > d and/or a > c.

Hypothesize that for both players i, i benefits if she has a particular finite rationality while

her opponent is fully rational, in comparison to the case where both i and her opponent are fully

rational.

Now the only way that Col would benefit by changing βCol from ∞ to some finite but non-

negative value is if her doing so forces Row to be willing to choose D rather than T (since if

Row still plays T, then that change to βCol canot improve Col’s expected utility). However since

e ≤ 0 and Row is rational, the only way that some finite βCol can induce Row to be willing to

play D is if it results in qCol(L) > 0 and in addition c ≥ a. Using similar reasoning with the

player roles flipped establishes that d ≥ f . But we know from our reasoning above that f > d

and/or a > c. This contradiction establishes the proposition. QED.

There are many similar issues that have yet to be addressed. For example, consider an N-

player persona sample game where all players other than i are irrational. For such a game, i

can always benefit from being more and more rational, since she is effectively playing a game

against Nature. So we know that (0, 0, . . .) cannot be a rationality equilibrium of such a game if

any player’s persona set includes positive rationalities. It is an open question what the minimal

non-negative α is such that (α, α, . . . ) is a rationality equilibrium of some game.

Another open formal question is to characterize the conditions under which a rationality

game has a joint pure rationality strategy equilibrium in which one of the players is not maxi-

mally rational while the others are. In other words, what are necessary and sufficient conditions
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so that if β j = ∞ for all j other than i, the optimal βi is finite? Similarly, what are necessary

and sufficient conditions so that the NE of the persona game results in a realized game mixed

strategy that is Pareto superior to the NE of the concrete game? When such conditions hold, no

player is hurt by playing the persona game rather than the associated concrete game.

There are other open issues that address completely different aspects of persona games. For

example, can it be the case that a persona equilibrium results in a worse value of the objective

function of some player i if she has a persona set A than it does if she instead has a persona set

A′ ⊂ A? In other words, while in utility games removing pure strategies may help a player, can

the analogous phenomenon occur in persona games? If such phenomena can occur, are they at

least precluded if A′ (and therefore A) contains the purely selfish, full rationality persona?

Empirically distinguishing conventional multistage games from persona sample games.

Consider the concrete game in Table 11. As discussed in the text, if the players engage in

a summary persona sample game where there are two personas, selfish and saintly, then Col

would pick persona saintly with probability 1.0 and Row would pick selfish with probability

1.0. This translates into the realized game joint pure strategy (L, D).

Now since Row picked the selfish persona with probability 1.0, she is fully rational in the

realized game, and so her realized game move is best-response to Col’s realized game move.

Accordingly, the outcome of the persona game is the same as it would have been if a conven-

tional (non-persona) Stackelberg game were played with Col moving first and picking move L.

In addition, in both the persona sample game and the Stackelberg game, Col has signaled her

choice to Row before Row moves. Accordingly, there is little to distinguish this persona sample

game from the associated Stackelberg game in an experimental setting.

Note though that for other concrete games there is not such an equivalence. (For example,

there is not such an equivalence for the the concrete game in Table 5.) In addition there is not
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this equivalence with persona distribution games, which have no explicit inter-player commu-

nication of personas. An important issue for design of persona game experiments is formally

characterizing the types of concrete game and types of persona sets for which there is this kind

of equivalence with a conventional Stackelberg (or more generally multistage) game.

Communication of personas and natural selection. In much of the previous work on games,

be they repeated or one-shot games, it is assumed that before the start of play all players are

provided the same common knowledge specifying the game. In particular, it is often assumed

that each player knows the specification of the game in full, including the strategy spaces, utility

functions and rationalities of all the players, together with the distributions governing all Nature

players. For example, this is the case in the QRE and in Bayesian games. Typically such work

models how the players use this common knowledge, rather than how they acquired it in the

first place and possible errors in that acquisition. (For work that is concerning with the latter,

see (8,45, 46).)

In the interests of space, we adopt the same approach here for our consideration of persona

sample games. We assume the exact same type of “common knowledge” as in that previous

work is communicated to the players before start of the realized game, and assume the same sort

of (often ill-specified) mechanism is involved in that communication. So we do not present a

detailed model of how in a persona sample game the realized game players acquire the common

knowledge of what realized game they are playing (i.e., of what the joint persona sample is).

Rather we concentrate on modeling how that realized game is decided in the first place, and

how the players behave once they have common knowledge of that game. (The difference

from the conventional game theory literature is only that here the realized game is determined

endogenously rather than exogenously.)

Nonetheless, we can make some cursory comments on possible mechanisms for transferring
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common knowledge of the realized game to the players in a persona sample game. These mech-

anisms could arise both in persona games where the realized game is determined endogenously

and in more conventional scenarios where the “realized game” is determined exogenously.

To be more precise, in persona sample games there must be a mechanism for the choice of

each player i in the persona game to be communicated to all the realized game players. There

must also be a mechanism that forces i’s realized game player to use the persona that i declared.

This second mechanism requires there be a cost to a player of changing her persona between

when she reveals it and when the realized game gets played.

One example of such a pair of mechanisms is where each player’s persona choice is directly

signaled to the other players (consciously or otherwise), and there is a cost for signaling one

persona while adopting another. Such a cost could manifest itself as an emotional discomfort.

For example, it might “hurt” (sic) an academic to act like an airhead in a social situation. Or it

might “hurt” (sic) someone who loves opera and loathes punk rock to act as though she likes

punk rock. Translated into the language of persona games, that “hurt” is a cost to a player who

signals one persona while adopting a different one.

Another example of such a pair of mechanisms arises in repeated non-anonymous instances

of the same game (or similar games) being played among a set of players when there is a cost to

changing personas between games. Such a cost would induce a player i to stick with the persona

that the other players have already encountered, which means that the persona i will use in the

current realized game has been honestly revealed to the other players (assuming they can learn

the persona in the earlier games from observations of the outcomes of those earlier games (8)).

Such a cost may be computational, e.g., it “hurts” (sic) to keep changing my persona from one

game to the next, since with each change I can no longer behave by force of habit, but have to

explicitly think about how I should act.6

6An extension of this pair of mechanisms would have each player i maintain the same persona distribution
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As a more formal model of such a cost, say the players in the repeated games each adopt

a set of computational “heuristics” (47) to ease their computational burden. Identify each such

set of heuristics with a persona. Then maintaining a persona lowers a player’s computational

burden, while changing a persona raises that burden. In this model, personas arise as a side-

effect of the benefit of adopting computational heuristics. In such a situation, the player wants

to adopt a persona anyway. If faithfully communicating that persona would then cause a further

improvement to her utility, no cost is needed to ensure that that communication is honest.

A third type of such a mechanism pair is where there is a trusted, unerring third party who

communicates persona choices, perhaps implicitly. An example is where an experimenter tells

the subjects of a behavioral game theory experiment that they are playing against human beings

rather than against computer programs. Assume the subjects have had sufficient experience

interacting with humans in realized games similar to the one at hand to have learned the typical

persona distribution of humans in such games. Then the third party comprises a (statistical)

way of communicating information about persona distributions to all the players in the current

game.

One can imagine that these types of mechanisms and persona sets arise under natural selec-

tion processes. For example, say we fix the move spaces of a set of N players, and are given

an index set G and then an associated set R ≡ {rγ1 , r
γ
2 , . . . r

γ
N : γ ∈ G} of possible joint utility

functions for the N players. So any particular r ∈ R is a set of N functions, each taking the

space of possible joint moves into the reals. Each such r specifies a game. Say we also have a

specified set of personas that each player i can adopt for each r ∈ R. (For example, it might be

that in all games i is able to adopt either the fully rational or the irrational persona, which would

mean that for each γ, her possible personas are the free utility with βi = 0 and the expectation

of rγi .)

between games rather than the precise same persona.
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Given this, we can average over γ the expected utilities that each player achieves after play-

ing the summary persona sample game for concrete game rγ. Depending on R, the distribution

across it, and the persona sets of the players, that average may be higher or lower than the

analogous average where all players always adopt full rationality in the concrete game. If the

average is higher when the persona games are played, then there might be evolutionary pressure

favoring the existence of such a mechanism pair together with the persona sets {Ai}; it is in the

interests of player i to be able to commit to a persona and to be able to honestly communicate

that to the other players.

In particular, say the distribution over utility games is symmetric, in that whatever the prob-

ability of game rγ, it equals the probability of every game rγ′ in which the utility function of

some pair of players are interchanged. Physically, this means that each member of the species

is a priori equally likely to play either role in any game it plays with some conspecific.

Then our analysis reduces to identifying the games r ∈ R and persona sets Ai such that

the average of expected Ui in concrete game r is less than the average of expected Ui in the

associated persona game for persona set Ai. So long as the distribution P(γ) is restricted to such

concrete games, we’re guaranteed that all members of the species will, on average, do better by

playing persona games.

In this formulation, an equilibrium persona distribution PAi is the distribution played by

every player of type i in a mix of N separate populations of players. Alternatively, say PAi is the

relative frequency of the personas of the players in population i. Then having the equilibrium

PAi be mixed would mean that we need a blend of personas to maximize the average utility of

that population. In such a situation that population would need a range of personality types in

order to function more effectively, including the “psychos”, “pushovers” and other non-rational

personas.

Consider a situation where repeated instances of the same persona game are played among
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the same (or related) sets of players. In such a situation, mechanism pairs like those discussed

above may not be needed to implement a persona sample game (and therefore the associated

evolutionary forces may not be necessary). More conventional processes might account for

each player’s declaring her persona and then adopting it in the realized game. Examples of such

processes are those that underlie the folk theorems (1, 2), and/or those that underlie more re-

cently investigated phenomena associated with reciprocal altruism, like punishment, reputation

effects, etc.

As a final comment, note that all of the foregoing considerations about how the players of the

realized game are provided with common knowledge of that game also apply to conventional,

non-persona games. In those games the common knowledge of the game’s specification is

determined exogenously rather than endogenously, but it still needs to be revealed to the players

as common knowledge, and then faithfully adopted by all the players.

Personalities. In the text, the only persona sets considered are those involving degrees of

rationality and degrees of altruism. There is no reason not to consider other kinds of persona

sets however. Risk aversion, uncertainty aversion, reflection points, framing effects, and all the

other “irrational” aspects of human behavior can often be formulated as personas. Note that

often experiments concerning such aspects of human behavior involve games involving a single

subject playing against Nature, and the interesting effects of persona games don’t apply there.

However such aspects of human behavior also affect play in games involving other players (and

in fact some of them may “carry over” to games against Nature from games involving other

human players.)

More generally, define a personality as a mapping taking any pair of a concrete game

({Xi : i ∈ N }, {ui : i ∈ N }) and the specification of a particular player i ∈ N to a distribution

over the set of all possible personas for that player in a realized game based on that concrete
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game. (More formally, the image of a personality is the space of probability measures over

R∆χ , which is the set of possible objective functions for the objective game.) In particular, a

deterministic personality is one that maps any concrete game to a single associated persona.

As an example, a rationality value β is a deterministic personality: Given any utility game

({Xi : i ∈ N }, {ui : i ∈ N }), it produces a single persona: the free utility Eq(ui)+β−1i S (qi). Sim-

ilarly, the parameter ρ specifying a player’s degree of altruism is a personality. When modeling

how personas might evolve in biological scenarios, it may make sense to consider evolutions of

personalities, which are defined for arbitrary sets of games, rather than just the direct evolution

of personas.

It would be interesting to investigate whether the real-world distribution over concrete

games in human cultures is one in which it is better to play persona games than the associ-

ated concrete games. For example, anthropological data may tell tell us what persona sets are

in use in a particular culture in the two-move games played by people in that culture. We could

then solve for the set of such two-move concrete games such that, for those persona sets and

those concrete games, it is advantageous to play persona games rather than the associated cn-

crete games. Potentially, related anthropological data would allow us to compare that set of

concrete games to the actual ones typically arising in that culture. Similarly, we can look for

what persona sets are common to all modern cultures. Then by solving as above, we can pre-

dict what concrete games are most frequent in the youngest common ancestor of all modern

cultures.

Calculations concerning the TD. The expected utilities for rationality pairs (∞,∞) and (0, 0)

are immediate. For a purely irrational player 2 and rational player 1, the player 1 mixed strate-

gies are given by all convex combinations of playing x1 ∈ {97, 98}. The expected utility of
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player 2 for those two x1 values is given by

E(u2 | x1, β2 = 0) =
1
100
([

x1−1
∑

y=2

(y + 2)
]

+ x1 +
[

101
∑

y=x1+1

(x1 − 2)
])

⇒ E(u2 | x1 = 97, β2 = 0) =
2661
50

' 53.22, (25)

E(u2 | x1 = 98, β2 = 0) =
2665
50

' 53.30 (26)

Similar calculations hold when it is player 1 who is irrational and player 2 who is rational.

Combining, we can express the NE of the realized games corresponding to all four possible

joint personas with the following set of matrices, where the ordering is (player 1 objective,

player 2 objective), the top row is for β1 = 0, the left column is for β2 = 0, and both q and s

range over the interval [0.0, 1.0]:
























(6967
200 ,

6967
200
)

(

s2661+(1−s)2665
50 , 247950

)

(

2479
50 ,

q2661+(1−q)2665
50

)

(2, 2)

























(27)

Using the uniform averaging summarizers to average over s and q gives Table 9.

As mentioned in the text, there is one mixed NE P(β1, β2) of the rationality game specified

in Table 9. To calculate the realized game distribution associated with that mixed rationality

NE, write

P(x1, x2) =
∑

β1,β2

P(x1, x2 | β1, β2)P(β1, β2)

=
∑

β1,β2

P(x1, x2 | β1, β2)P(β1)P(β2). (28)

where each of the four distributions P(x1, x2 | β1, β2) is evaluated using the uniform averaging

summarizer if there are multiple realized game NE for that (β1, β2) pair. For both players i the

associated marginal distribution is given by P(xi) =
∑

β1,β2 P(xi | β1, β2)P(β1)P(β2). Plugging in

gives the values discussed in the text.
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If we redo the foregoing analysis for arbitrary (integer) values of the reward / penalty R we

find that nothing changes for either the joint rationality (β1 = 0, β2 = 0) or (β1 = ∞, β2 = ∞).

To address the off-diagonal joint-rationalities we solve to find that the integers on either side of

x1 = 203−4R
2 maximize E(u1 | x1,R, β2 = 0). The two associated values of E(u1 | x1,R, β2 = 0)

both equal 41201+16(R−50)R800 , and the two associated values of E(u2 | x1,R, β2 = 0) are 1
50(2575 +

R(49 − 3R)) and 1
50(2575 + R(51 − 3R)).

So again using the uniform averaging summarizers, we find that Table 9 changes to
























( 6967
200 ,

6967
200
)

(

2575+R(50−3R)
50 , 2575−R(50−R)50

)

(

2575−R(50−R)
50 , 2575+R(50−3R)50

)

(2, 2)

























(29)

This bimatrix will have a mixed NE only for 0 < R < (25 + 5
√
322)/3; the associated mixed

strategy equilibrium is given by:

P(β1 = 0) = P(β2 = 0) =
4(3R2 − 50R − 2475)

8R2 − 13233
(30)

For R outside of this range the two NE at (∞, 0) and (0,∞) also vanish, and the only NE is the

pure strategy of full rationality (∞,∞).

Calculations concerning the UG. Formally, the UG concrete game is a perfect and com-

plete information extensive form game with a single move by each of the two players, with

B moving first. We take X to be finite, but “almost dense” in (0.0, 1.0], in the sense that

maxz∈(0.0,1.0][minx∈X |x − z|] is arbitrarily small. Given any differentiable function M : R → R,

this assumption concerning X allows us to approximate the argmaxima of M over X by solving

for the z such that M′(z) = 0.

For simplicity, we adopt the multi-agent representation (36). So given a value β, at node x

of the game tree (i.e., after B has made offer x), S chooses accept with the behavioral strategy
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probability fβ(x) ! eβx/(1 + eβx). So the expected utility of B for making offer x is:

E(uB | x, β) = (1 − x) fβ(x) (31)

The associated expected utility for S is E(uS | x, β) = x fβ(x).
∂E(uB|x,β)
∂x monotonically decreases from x = 0 and is positive for some x only if ∂ fβ(x)

∂x |x=0 ≥

1/2. Since S wants an offer x > 0 and S sets β, this means that β ≥ 2.

For a β satisfying that bound, the x that maximizes the expected payoff to B is the value x(β)

solving −1 + (β − 1)e−βx(β) − βx(β)e−βx(β) = 0, i.e.,

x(β) =
β −W(eβ−1) − 1

β
(32)

where W(x) is the Lambert W function. This x(β) is the amount that a fully rational B will

offer to S if B knows S has rationality β. So the best β that S can adopt is the maximizer of

x(β) fβ(x(β)). The associated values of β, x(β) and fβ(x(β)) are presented in the text.

Phase transitions in persona games. In this section we present examples of summary per-

sona sample games that exhibit “phase transitions”. These examples are persona games for

two-player, two-move concrete games, where each persona set Bi is the set of all free utilities

that have the same utility function ui and a rationality βi ∈ [0,∞). Intuitively, the phase transi-

tion point is a pair of rationalities for the players such that if one player reduces her rationality

by an infinitesimal amount, the other player says “okay, I’ve had enough; I’m going to change

my choice”, and flips her realized game move accordingly.

Since the concrete game is so small, for pedagogical purposes we do all matrix inversions

explicitly. We start by writing the utility bimatrix as
[

(a1, a′1) (a2, a′2)
(a3, a′3) (a4, a′4)

]

(33)

where as usual the Row player utility values are the a terms and Col player’s utility values are

the a′ terms. The probability of player i choosing strategy s is written Pi(s), and we define
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PRow(T) = pRow1 , PRow(D) = pRow2 = 1 − pRow1 , PCol(L) = pCol1 and PCol(R) = pCol2 = 1 − p
Col
1 . The

expected utility to player i given that player i adopts strategy s is written E(ui | s):

E(uRow | T) = pCol1 a1 + pCol2 a2 = a2 + pCol1 (a1 − a2), (34)

E(uRow | D) = pCol1 a3 + pCol2 a4 = a4 + pCol1 (a3 − a4), (35)

E(uCol | L) = pRow1 a′1 + p
Row
2 a′3 = a′3 + p

Row
1 (a′1 − a

′
3), (36)

E(uCol | Row) = pRow1 a′2 + p
Row
2 a′4 = a′4 + p

Row
1 (a′2 − a

′
4). (37)

So the QRE is given by the quadruple of values Pi(s) solving the following pair of simultaneous

equations:

pRow1 =
eβrE(u1 |T)

∑

s∈s1 eβrE(u1 |s)
, (38)

pCol1 =
eβcE(u2 |L)

∑

s∈s2 eβcE(u2 |s)
. (39)

We can transform pRowi and pColi into more convenient symmetrized versions by:

pRow1 =
1 − Y
2

and pRow2 =
1 + Y
2

; Y = pRow2 − pRow1 = 1 − 2pRow1

pCol1 =
1 − X
2

and pCol2 =
1 + X
2

; X = pCol2 − p
Col
1 = 1 − 2pCol1

Under this transformation the equations defining the QRE become

Y = f (X, βRow) = 1 −
2eβRowE(uRow |T)
∑

s∈s1 eβRowE(uRow |s)
, (40)

X = g(Y, βCol) = 1 −
2eβColE(uCol |L)
∑

s∈s2 eβColE(uCol |s)
, (41)

where the expectations over the utilities in symmetrical variables are:

E(uRow | T) =
1
2
(a1 + a2 + X(a2 − a1)), (42)

E(uRow | D) =
1
2
(a3 + a4 + X(a4 − a3)), (43)

E(uCol | L) =
1
2
(a′1 + a

′
3 + Y(a

′
3 − a

′
1)), (44)

E(uCol | Row) =
1
2
(a′2 + a

′
4 + Y(a

′
4 − a

′
2)). (45)
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Now define F(Y, βRow, βCol) ! Y − f (X, βRow) = Y − f (g(Y, βCol), βRow). So a QRE is the

Y solution to F(Y, βRow, βCol) = 0, with X then set to g(Y, βCol). In general, there are multiple

solutions to F(Y, βRow, βCol) = 0 for a given (βRow, βCol) pair, call these sets of solutions {Yi} and

{Xj}. Note that not every pair (Yi, Xj) is a fixed point. In fact, there is a bijection between {Yi}

and {Xj} that picks out the pairs that are fixed points.

We can now find the rate of change of the fixed point pairs (Y, X) with respect to βRow

by holding βCol constant and finding the vector orthogonal to the level set F = 0. First we

differentiate F with respect to its three arguments, getting

F1(Y, βRow, βCol) = 1 − f1g1, (46)

F2(Y, βRow, βCol) = − f2, (47)

F3(Y, βRow, βCol) = − f1g2 (48)

where we use subscripts to denote the variable which we are differentiating with respect to and

we have dropped the functional dependencies on the right hand side for clarity. The vectors

orthogonal to F solve 0 = [r, s, t] · [F1, F2, F3], i.e., r = −sF2−tF3F1
, where r = δY , s = δβRow, and

t = δβCol. Noting that rs |t=0 =
δY
δβRow
|t=0 = ∂Y

∂βRow
we can plug in to get

∂Y
∂βRow

=
−F2
F1

=
f2

1 − f1g1
. (49)

Then using the chain rule on X = g(Y, βCol) gives

∂X
∂βRow

= g1
∂Y
∂βRow

=
g1 f2

1 − f1g1
(50)

47



where:

f1(X, βRow) =
βRow(1 − Y2)

4
(a1 − a2 − a3 + a4), (51)

g1(Y, βCol) =
βCol(1 − X2)

4
(a′1 − a

′
2 − a

′
3 + a

′
4), (52)

f2(X, βRow) =
1 − Y2

2
(E(uRow | D) − E(uRow | T)),

=
1 − Y2

4
(−a1 − a2 + a3 + a4 + X(a1 − a2 − a3 + a4)), (53)

g2(Y, βCol) =
1 − X2

2
(E(uCol | Row) − E(uCol | L)),

=
1 − X2

4
(−a′1 + a

′
2 − a

′
3 + a

′
4 + Y(a

′
1 − a

′
2 − a

′
3 + a

′
4)). (54)

Similar calculations give ∂Y
∂ρCol

and ∂X
∂ρCol

.

We will need to express the rationalities in terms of X and Y . To do that first write

pRow1 =
eβRow(pCol1 a1+pCol2 a2)

eβRow(pCol1 a1+pCol2 a2) + eβRow(pCol1 a3+pCol2 a4)
(55)

so that

βRow =
ln
( 1−pRow1

pRow1

)

pCol1 (a3 − a1) + p
Col
2 (a4 − a2)

, (56)

and similarly write

pCol1 =
eβCol(pRow1 a′1+p

Row
2 a′3)

eβCol(pRow1 a′1+p
Row
2 a′3) + eβCol(pRow1 a′2+p

Row
2 a′4)

; (57)

βCol =
ln
(1−pCol1

pCol1

)

pRow1 (a′2 − a
′
1) + p

Row
2 (a′4 − a

′
3)

(58)

Now substitute in the symmetrical form of the variables:

βRow =
2 ln
(

1+Y
1−Y

)

−a1 − a2 + a3 + a4 + X(a1 − a2 − a3 + a4)
(59)

βCol =
2 ln
(

1+X
1−X

)

−a′1 + a
′
2 − a

′
3 + a

′
4 + Y(a

′
1 − a

′
2 − a

′
3 + a

′
4)

(60)
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We are now ready to demonstrate phase transitions in persona games based on two-player,

two-move, simple concrete games. To do this we first define the partition function of a QRE

and its derivative in an analogous fashion to that of statistical mechanics. Then we show that

the derivative of the partition function can diverge for a particular pair of player rationalities for

a particular concrete game.

ln(Zcol) = ln
(

eβcolE(ucol |L) + eβcolE(ucol |R)
)

∂ ln(Zcol)
∂βcol

=
1
Zcol

(

E(ucol | L)eβcolE(ucol |L) + E(ucol | R)eβcolE(ucol |R)
)

+

βcol
Zcol

(

eβcolE(ucol |L)
∂E(ucol | L)
∂βcol

+ eβcolE(ucol |R)
∂E(ucol | R)
∂βcol

)

= E(ucol) + βcol
(

pL
∂E(ucol | L)
∂βcol

+ pR
∂E(ucol | R)
∂βcol

)

= E(ucol) +
βcol
2
∂Y
∂βcol

(

pL(a′3 − a
′
1) + pR(a

′
4 − a

′
2)
)

= E(ucol) +
βcol
4
∂Y
∂βcol

(

(1 − X)(a′3 − a
′
1) + (1 + X)(a

′
4 − a

′
2)
)

= E(ucol) +
βcol
4
∂Y
∂βcol

(

− a′1 − a
′
2 + a

′
3 + a

′
4 + X(a

′
1 − a

′
2 − a

′
3 + a

′
4)
)

= E(ucol) +
βcolg2 f1
4(1 − f1g1)

(

− a′1 − a
′
2 + a

′
3 + a

′
4 + X(a

′
1 − a

′
2 − a

′
3 + a

′
4)
)

(61)

where pL and pR are the probabilities of column player choosing strategiesL andR respectively.

We now redefine parameters and write

a1 = a1 − a2 − a3 + a4 (62)

a2 = −a1 + a2 − a3 + a4 (63)

a3 = −a1 − a2 + a3 + a4 (64)

a′1 = a′1 − a
′
2 − a

′
3 + a

′
4 (65)

a′2 = −a
′
1 + a

′
2 − a

′
3 + a

′
4 (66)

a′3 = −a
′
1 − a

′
2 + a

′
3 + a

′
4 (67)
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We also define c(X,Y) ! βcolβrow(1 − Y2)(1 − X2). This allows us to write

∂ ln(Zcol)
∂βcol

= E(ucol) +
a1c(X,Y)(a′3 + Xa

′
1)(a

′
2 + Ya

′
1)

64 − 4a1a′1c(X,Y)
(68)

This diverges if the following constraints hold:

c(X,Y) =
16
a1a′1

(69)

0 ! a1c(X,Y)(a′3 + Xa
′
1)(a

′
2 + Ya

′
1) (70)

Assuming the first constraint holds, the second constraint is guaranteed so long as:

a1 ! 0, a′2 + Ya
′
1 ! 0, a′3 + Xa

′
1 ! 0 (71)

Now

βcolβrow =
4 ln
(1+Y
1−Y
)

ln
( 1+X
1−X
)

(a3 + Xa1)(a′2 + Ya
′
1)

(72)

In addition, a pair (X,Y) is guaranteed to be a QRE with a unique βcol and βrow whenever

E(ucol | L) ! E(ucol | R) and E(urow | T) ! E(urow | D). This in turn means:

a′2 + Ya
′
1 ! 0 and a3 + Xa1 ! 0 (73)

So for any Y obeying Eq.’s 71 and 73, if we can find an X such that Eq. 70 holds as well as the

second constraint in Eq. 73, then we have a phase transition.

An example occurs for the bimatrix
[

(0, 0) (6, 1)
(5, 5) (4, 6)

]

(74)
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To verify this write out the redefined parameters:

a1 = a1 − a2 − a3 + a4 = −7

a2 = −a1 + a2 − a3 + a4 = 5

a3 = −a1 − a2 + a3 + a4 = 3

a′1 = a′1 − a
′
2 − a

′
3 + a

′
4 = 0

a′2 = −a
′
1 + a

′
2 − a

′
3 + a

′
4 = 2

a′3 = −a
′
1 − a

′
2 + a

′
3 + a

′
4 = 10

Next take the limit as βrow → ∞, and set βcol to the value where the row player decides to flip

from one row to the other. This is the limit where Y → 0, and X → 3/7. For convenience,

express that as the limit as z→ 0 where Y = z, and X = 3/7 − z/7:

βrow =
2
7
ln
(1 + z
1 − z

)

(75)

βcol = ln
(10 − z
4 + z

)

(76)

So we finally get:

lim
z→0

∂ ln(Zcol)
∂βcol

= lim
z→0

−2, 800 ln(5/2) ln
(

1+z
1−z

)

784 z
= ∞ (77)

as claimed.
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